Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Biol Chem ; 300(4): 107159, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479602

In the present study, we examined the mitochondrial hydrogen peroxide (mH2O2) generating capacity of α-ketoglutarate dehydrogenase (KGDH) and compared it to components of the electron transport chain using liver mitochondria isolated from male and female C57BL6N mice. We show for the first time there are some sex dimorphisms in the production of mH2O2 by electron transport chain complexes I and III when mitochondria are fueled with different substrates. However, in our investigations into these sex effects, we made the unexpected and compelling discovery that 1) KGDH serves as a major mH2O2 supplier in male and female liver mitochondria and 2) KGDH can form mH2O2 when liver mitochondria are energized with fatty acids but only when malate is used to prime the Krebs cycle. Surprisingly, 2-keto-3-methylvaleric acid (KMV), a site-specific inhibitor for KGDH, nearly abolished mH2O2 generation in both male and female liver mitochondria oxidizing palmitoyl-carnitine. KMV inhibited mH2O2 production in liver mitochondria from male and female mice oxidizing myristoyl-, octanoyl-, or butyryl-carnitine as well. S1QEL 1.1 (S1) and S3QEL 2 (S3), compounds that inhibit reactive oxygen species generation by complexes I and III, respectively, without interfering with OxPhos and respiration, had a negligible effect on the rate of mH2O2 production when pyruvate or acyl-carnitines were used as fuels. However, inclusion of KMV in reaction mixtures containing S1 and/or S3 almost abolished mH2O2 generation. Together, our findings suggest KGDH is the main mH2O2 generator in liver mitochondria, even when fatty acids are used as fuel.


Fatty Acids , Hydrogen Peroxide , Ketoglutarate Dehydrogenase Complex , Mitochondria, Liver , Animals , Female , Male , Mice , Electron Transport Complex I/metabolism , Electron Transport Complex III/metabolism , Fatty Acids/metabolism , Hydrogen Peroxide/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Oxidation-Reduction
2.
J Biol Chem ; 299(12): 105399, 2023 Dec.
Article En | MEDLINE | ID: mdl-37898400

Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.


Hepatocytes , Hydrogen Peroxide , Ketoglutarate Dehydrogenase Complex , Mitochondria, Liver , Pyruvate Dehydrogenase Complex , Hydrogen Peroxide/metabolism , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/metabolism , Oxidation-Reduction , Oxidative Stress , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism , Humans , Hepatocytes/enzymology , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Animals , Mice
...